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We study the necessary conditions for the formation of domains in helimagnets by calculating an exact
expression for the classical magnetic dipolar energy associated to the magnetic helix, as a function of its pitch
�0 and the system size. For magnets whose caliper dimensions exceed �0, we show that the dipolar energy
density vanishes except at a region of depth �0 near the surface of the system. Thus, effectively, the dipolar
magnetic energy is a skin effect which scales with the surface of the system. Consequently, the formation of
domains becomes, in this case, energetically unfavorable. On the other hand, as the helimagnet smallest caliper
dimension becomes comparable to �0, the dipolar energy crossover to a volume effect and, just like in a
ferromagnet, for large enough systems the presence of domain walls reduces the dipolar energy and hence
induces the formation of domains.

DOI: 10.1103/PhysRevB.78.224420 PACS number�s�: 75.60.Ch, 75.70.Kw, 75.10.�b

Helimagnets are magnetic materials exhibiting a space-
dependent periodic magnetization in which the atomic spins
are ferromagnetic at certain atomic planes but its direction
rotates by a small angle as one moves to adjacent layers.1

The local equilibrium magnetization vector describes a regu-
lar helix whose strength and pitch are characteristic of the
substance and the temperature. There exist a great variety of
materials that display this magnetic behavior such as MnO,2

different rare-earth elements and compounds,3 metal silicide
alloys,4,5 magnetic superlattices,6 two-dimensional electron
heterostructure systems with spin-orbit interaction,7 etc. The
helix pitch is usually determined by neutron scattering and
typically ranges from a few nanometers for the rare earth to
20–40 nm for the metal silicide compounds. The physical
mechanism that accounts for this behavior depends on the
system atomic structure and usually arises from competing
ferroexchange, antiferroexchange interactions, or from
Dzialoshinsky-Moriya antisymmetric spin coupling in struc-
turally asymmetric crystals.8–11 In the recent years there has
been an increasing interest in these systems mainly because
of their potential applications in the field of spintronics.12

The interaction of conduction electrons with the space-
dependent exchange field, which couples spin and space de-
grees of freedom altogether, unveils new mechanisms for the
manipulation and control of the electron spin and their cur-
rents.

In this work we shall analyze the necessary conditions for
domain formation in helimagnets. This is a crucial issue that
can have important effects on their applications. In addition,
recent experiments employing Lorentz electron microscopy13

and spin-polarized scanning tunneling microscopy14 have
permitted direct real-space observation of local helical mag-
netization with a great resolution. Experiments in a monoc-
rystal of FexCo1−xSi report the appearance of complex, non-
periodic, and domainlike structures whose origin remains so
far unexplained.14

Domain formation in ferromagnets results from the com-
peting effects of the weak but long-ranged magnetostatic di-
polar interaction with the strong but short-ranged spin-
exchange energy. It is well known that the dipolar energy
increases with the volume of the system. The formation of
domains reduces the dipolar energy but increases the ex-

change energy. This latter increase, however, grows with the
area of the domain walls and hence is a surface effect. Thus,
for large enough systems, the homogeneous magnetization
breaks down into the more energetically favorable domain
structure.15 In the following we will analyze the stability of
the magnetic helix configuration in the micromagnetic ap-
proximation by calculating the resultant magnetic dipolar en-
ergy and determining how it increases with the volume. To
simplify the mathematics we will assume that the helimagnet
has the shape of a long cylinder of radius r0 and its magnetic
helix axis is parallel to the cylinder axis. If we let z be the
cylinder axis and call �0=2� /� as the helix pitch with � as
the associated wave vector, the local magnetization density
vector is given by

M�z� = M0�cos �z

sin �z

0
���r0 − r� , �1�

where � is the Heaviside step function and r is the radial
distance from the z axis. Both M0 and � are constant param-
eters determined by the minimization of the exchange free-
energy functional. Let us calculate the magnetic dipolar en-
ergy associated to this configuration. We will first assume the
cylinder is very long �infinite� so that end effects are negli-
gible and consider the dipolar energy per unit length. This
energy is given by

� = − �1

2
�� � � M�r� · H�r�d3r , �2�

where H�r� is the field resulting from the magnetization den-
sity and the integration extends over a cylinder of unit
length. The standard relationships require H=B−4�M with
B as the resulting magnetic field and H�r� satisfying ��H
=0 and � ·H=−4��M. Thus writing H�r�=−���r�, we
conclude that

�2��r� = 4��� · M� = − 4�M0 cos��z − 	�
�r − r0� , �3�

where we introduced cylindrical coordinates x=r cos 	 and
y=r sin 	. To solve Eq. �3� we make use of the chiral sym-
metry corresponding to a magnetic helix. We note that our
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system is invariant under arbitrary displacements along the z
axis followed by a proper rotation about z. This continuous
symmetry leaves the helix and also the cylinder shape un-
charged. Consequently, the resulting H and B fields must
share the same symmetry. Therefore H�r� ·M�r� is indepen-
dent of z and the energy integral �2� becomes

� = − �M0

2
��

0

r0

rdr�
−�

+�

d	Hx�r,	� . �4�

Let us find a solution to Eq. �3� of the form

��r,	,z� = f�r�cos��z − 	� . �5�

Substituting it into Eq. �3�, now written in cylindrical coor-
dinates, yields

d2

d�2F��� +
1

�

d

d�
F − �1 + 1/�2�F��� = − 4��M0/��
�� − �0� ,

�6�

where �=�r and f�r�=F���. This is the inhomogeneous
modified Bessel equation of order 1 and a particular continu-
ous solution and finite for all � is

F��;�0� = − 4��M0�0/������ − �0�K1���I1��0�

+ ���0 − ��K1��0�I1���	 , �7�

where K1��� and I1��� are the modified Bessel functions of
order 1. On physical grounds, we require that F��� be finite
for all r. This condition precludes the addition of any linear
combinations of independent solutions of the homogeneous
differential equation, namely, K1��� and I1���, as they
diverge16 either at �=0 or �→�. In conclusion, the solution
to Eq. �3� is ��r ,	 ,z�=F�� ,�0�cos��z−	� with F��i�0�
given by Eq. �7�. Let us note that for rr0 the magnetic field

is given by −�� �. So if we substitute for � and take the
asymptotic form of the function K1��� and its derivatives, we
conclude that the magnetic field decreases exponentially for
large r with a characteristic length �−1.

It is somewhat surprising that a magnetic field arising
from a localized current distribution, as given by ��M,
exhibit for r�1 /� an exponentially decaying behavior rather
than some inverse power of r, as a multipole expansion ap-
proximation would naively indicate. It is precisely the helic-
ity of the current source as well as its infinite length along
the z axis which enforces this result. We will show below
that this asymptotic behavior of the field has a profound
effect on the system magnetostatic energy.

Let us next evaluate the resulting energy. Substituting for
H=−�� in Eq. �4� we obtain

� = �2�M0�2K1��0�I1��0���0/��2. �8�

This will be our main result. First, we consider the limit r0
��−1 for fixed �. In this case we use the asymptotic expres-
sions for K1��� and I1��� for large �

K1��� 
 e−���/2��1/2, I1��� 
 e�/�2���1/2, �9�

so that K1���I1���
1 /2�0, and derive that in this limit the
magnetostatic energy grows linearly with r0. Thus the con-
clusion is that the dipolar energy does not increase with the

volume of the system but rather in proportion to its surface.
The origin of this effect will be further discussed below. Let
us next consider the limit �→0 with r0 fixed. Then have
�0→0 and since I1��0�
�0 /2 and K1��0�
1 /�0, we obtain
I1��0�K1��0�
1 /2. Substituting it into Eq. �8� we conclude
that the energy grows as r2. In summary, we find that in the
case � fixed, �0→�, the energy grows as a surface term and
hence the system will be stable against domain formation
whereas in the latter case, r fixed, �→0, the system ap-
proaches a ferromagnet, the dipolar energy grows as r0

2, and
thus it becomes a volume effect. In Fig. 1 we depict
� / �4�M0�2 as a function of r0 and �. This exhibits the cross-
over behavior from helimagnet to ferromagnet.

Our next goal is to extend these results to systems with a
noncircular cross section. However the lack of chiral sym-
metry makes this calculation considerably more difficult.
Nonetheless we will derive an approximate simple expres-
sion for energy. Let us suppose that the system’s magnetiza-
tion is oriented as before but that its cross section is noncir-
cular. We will further assume that its caliper dimensions are
much larger than �0 and its length along the z axis is infinite.
To obtain the energy per unit length, let us regard the system
as composed of many parallel circular cylinders of small
radius r0 that span the whole cross section. The energy is
then the sum of the self-energy of each cylinder, as derived
before, plus their mutual interactions. A key issue in the
evaluation of these terms is to recall that the magnetic field
produced by a rod decays exponentially for large r. Thus, for
example, we easily derive from Eqs. �5� and �7� that

Bx = −
��

�x
= 4�M0�0I1��0��K0���cos2 	 + �1/��K1���cos 2		

� M0�0I1��0���3/8��1/2e−� cos2 	 . . . , �10�

where K0��� is the modified Bessel function of order 0, for
which we substituted by its asymptotic form in the limit �
=�r�1. In Eq. �10� deleted terms are of higher order in 1 /�.
Similar expressions can be derived for other components of
B. The interaction energy of a rod with the rest of the system
is given by

Uint = −� � � d3r M · B ,

r  r0,

0 � z � 1. �11�

The exponential decay of B with r allows us to extend the
upper limit of the radial integral to � with negligible error. In
addition, this limit restores the chiral symmetry of the inte-
gral and the integrand becomes independent of z and thus it
can be evaluated for any z. Setting z=0 and substituting for
Bx into Eq. �11�, we derive
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Uint = − �
0

2�

d	�
r0

�

dr rM0Bx = 8�2M0
2I1��0�K1��0���0/��2.

�12�

Comparing this result with Eq. �8�, we conclude that the
interaction energy is twice as large as the rod self-energy and
it has the opposite sign. Moreover, we also note that this
result is independent of the value of �0. Consequently, the
total �bulk� energy of the system given by the sum of the
self-energies plus half of their mutual interactions �to avoid
double counting� add to zero. This is a surprising effect. The
system bulk dipolar magnetic energy vanishes. By compar-
ing it with our previous result, we conclude that part of the
energy must have been left out in this analysis. It becomes
clear then that the assumptions that lead to Eq. �12� fail when
the cylinders lay in the neighborhood of the system boundary
surfaces within a characteristic length of order 1 /�. In this
case, setting the limit of the integration to infinity is not
justified and the correct expression will differ from Eq. �12�.
Thus we conclude that the total dipolar energy must arise
precisely from this boundary region. In fact, by comparing
with our previous exact result, we infer that the general ex-
pression for the energy must have the form

� = 2��M0
2/���perimeter of system�c0, �13�

where c0 is a constant of order 1 that depends on the geom-
etry of the system cross section. Moreover, we note that as
the helix pitch grows the region contributing to the surface
energy grows accordingly until it comprises the whole sys-
tem. In this limit the helimagnet becomes a ferromagnet and
the dipolar energy increases with the volume.

So far we have analyzed helimagnets of infinite length in
the direction of the helix axis. Let us next study the behavior

of a system of finite length. However, we will again assume
that the pitch �0 is much larger than any caliper dimensions
of the magnet. For mathematical simplicity we consider a
cylinder of radius r0 and height L oriented along the helix
axis. In addition, let �L=2�n, where n is some even integer,
n�1. The total energy is given by Eq. �2�, where the integral
extends along the length L; �z��L /2. The field H must now
be calculated for a cylinder of finite length. To calculate H
we evoke the superposition principle and regard the finite
cylinder as the sum of an infinite cylinder with magnetization
M, as given by Eq. �1�, plus a cylinder with a gap of length
L, centered at the origin but having the opposite magnetiza-
tion −M �see Fig. 2�. Thus accordingly, we can write H
=H�+
H with H� given by −�� � and 
H being the field at
the gap between the separated cylinders. The energy then
becomes

� = −
1

2
�

−L/2

+L/2

dz�
�r��r0

� M · Hd2r = − �2�M0�2K1��0�I1��0�

���0/��2L −
1

2
� � � M · 
H . �14�

If we write 
H=−�� �, the last term in Eq. �14� can be inte-
grated by parts and yields

1

2
� � � M · �� �d3r =

1

2
� � �M · n̂da

−
1

2
� � � ��� · Md3r . �15�

The first term in Eq. �15� is a surface integral over the cyl-

inder wall at r0. Inserting the expression for �� M into the

2
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8
10

�0��2Π�
2

4
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8
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Ε��2ΠM0�
2
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6
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10

�0��2Π�

FIG. 1. �Color online� Plot of the magnetic dipolar energy per unit of length of an infinite cylindrical magnet of radius r0. The
magnetization has a constant magnitude M0, is assumed perpendicular to the cylinder’s axis, and rotates about this axis with a period �0

=2� /� thus describing a helix. The rescaled energy � is depicted as function of r0 and �0. For �0�r0 and fixed, the dipolar energy grows
linearly with r0, indicating that it is a surface effect. On the other hand for �0�r0 and fixed, the energy grows quadratically with r0,
indicating that it is a volume effect. Note that in this limit the system approaches a ferromagnet. In the intermediate region this graph shows
the crossover from one regime to the other. It will be shown in the text that these results are equally valid for a finite length cylinder.
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second integral gives a contribution identical to the first
term. Consequently,

−
1

2
� � � M
H = 2M0r0�

−L/2

L/2

dz�
−�

+�

��z,	,r0�

�cos��z − 	�d	 . �16�

To evaluate ��z ,	 ,r0� at the gap, �z��L /2, let us slice the
top and bottom cylinders into sections of length �0 and cal-
culate their contribution. Clearly � will be given by the sum
over all these terms. A slice located at z0 will consist of a ring
of radius r0, height �0 with a magnetic surface density
charge ��z� ,	�=M0 cos��z�−	�, where z0�z��z0+�0, 0
�	�2�, and �z0�L /2. The contribution of each slice will
be evaluated approximately by considering its leading non-
vanishing multipole expansion term. Let us choose z0 such
that �z0=2�N, where N is an integer labeling the slice posi-
tion. It is easily seen that the dipole term vanishes and the
quadrupole tensor Qij has only one nonvanishing component,
namely,

Qyz = 3� � ��z�,	�yzr0d	dz� = − 3M0r0
2��0/� . �17�

Moreover, it is evident that the contribution to ��z ,	� from a
slice located at equal distances but in opposite directions will
cancel each other. Therefore for z0 the only contributing
slices to ��z ,	� are those located at L /2�z0�L /2+z. Simi-
larly for z�0 the contributions result from slices at −L /2
+z�z0�−L /2. Moreover the resulting expression for
��z ,	� must satisfy ��−z ,	�=−��z ,	�. Thus for z0 the
function � is

��z,	,r0� = 
slice at z0

with L/2�z0�L/2+z

3���/��M0r0
3 sin 	�z0 − z�/�r0

2

+ �z0 − z�2�5/2 = ��M0r0
3/��sin 	�

L/2

L/2+z

dz0�3�z0

− z��/�r0
2 + �z0 − z��5/2 = ��M0r0

3/��sin 	��r0
2

+ �L/2 − z�2�−3/2 − �r0
2 + �L/2�2�−3/2	 , �18�

where we replaced the sum over z0 by an integral. Finally
substituting for ��z ,	 ,r0� into Eq. �16�, we obtain

1/2� � � d3rM · 
H = 8�2�M0
2r0

4/��

��1/L2��
0

1

du sin n�u��A2 + �1

+ u�2�−3/2 + �A2 + �1 − u�2�−3/2	 ,

�19�

where A=2r0 /L is the aspect ratio of the cylinder and �L
=2�n, with n as a large even integer. We can approximate
the integral in Eq. �19� by expanding it in inverse powers of
n. The rapidly oscillating nature of the integrand implies that
as n→�, the integral must vanish. Let us then Taylor expand
the smooth function inside the curly brackets and integrate
the resulting series term by term. If we retain only those
which are of order 1 /n, we easily derive

1/2� � � d3rM · 
H = − �1/8n��M0
2r0/���A3/�1 + A2�3/2�L

+ . . . , �20�

where deleted terms are of higher orders in 1 /n. Finally the
total energy is obtained by substituting Eq. �20� into Eq.
�14�. For large r0, with A and � fixed, this yields

� = 2�2�M0
2r0L�/� + �1/8n��M0

2r0L/���A3/�1 + A2�3/2� .

�21�

In summary, we have found that the magnetic energy of a
finite cylinder is a surface term. Moreover, the contribution
resulting from the cylinder end surfaces is negligible. We
note, however, this is an exceptional case for which the local
magnetization is parallel to the end walls and thus the result-
ing magnetic charge density vanishes there. We expect that
for other geometries or helix axis orientations this will not be
the case.

In conclusion, we can generalize our results and state that
for any helimagnet whose caliper dimensions are ��0 the
magnetic dipolar energy will result from a region of depth �0
located near the surface of the system. Consequently, the
magnet will exhibit no domains. Nonetheless, this analysis,
in principle, would not preclude the formation of domains
confined to the system surface. For example, if the local
magnetization gradually becomes tangent to the surface, the
magnetic stray field energy would then be reduced. However,
in such a case the contribution resulting from the strong ex-
change anisotropy term will increase in proportion to the

= +
( )zM ( )zM

( )z−M

( )z−M

0Λ

FIG. 2. By the superposition principle, a finite cylinder of length
L and magnetization M�z�, as given by Eq. �1� and centered at the
origin, can be regarded as the sum of an infinite cylinder with
magnetization M�z� plus an infinite cylinder with magnetization
−M�z�, but with a gap of length L centered at the origin. The cyl-
inder sections of length �0 are indicated with dashed lines. Their
leading contribution to the magnetic field in the gap is quadrupolar.
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area of the surface-bulk interface, so that domains will not be
energetically favorable. These conclusions confirm the con-
jecture made by Uchida et al.13 that the domain structures
observed in the FexCo1−xSi crystal have a nonmagnetic ori-
gin. More likely they result from the space dependence of the
exchange energy terms associated to inhomogeneity in the
distribution of Fe atoms in the samples. Finally we note that
systems for which some linear dimension is smaller than �0,
such as magnetic nanowires17,18 or thin magnetic films with
free surfaces or embedded in a nonmagnetic host,14 the ex-

change energy of a domain wall will scale in proportion to its
length; whereas the magnetic dipolar energy grows with the
size and hence, for sufficiently large systems, the formation
of domains will become energetically favorable. This fact
has been amply studied and there exists a vast literature on
the subject.19,20
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